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1 Introduction

The TLC trip record data' reports Yellow and Green taxi and other “for-hire vehicle” trips
in New York City. In the earlier years, Yellow and Green taxi records contain time, distance,
passenger count, fare, etc., but also location of pickup and dropoff. Based on those data we
attempt to answer:

How many adaptively routed minibuses could meet the same demand?

2 Data preparation

2.1 Taxi trips’

We focus henceforth on May 2016 with ~12M (Yellow) and ~1.5M (Green) trip records.

The ~11M “for-hire vehicle” records bear no useful details for our purpose. We keep only

the trips that begin and end in Manhattan with reported trip distance between 0.1 and 30 code
miles. We filter out records that lack geo-coordinates. See Fig. 1 for a net summary. #1

2.2 Road graph’

We obtained the road network for Manhattan from the OpenStreetMap Overpass APl and #3
filtered for roads plausibly open for public traffic. It is represented as a digraph, i.e. there 44
are one-way roads and the routing A — B differs from B — A. Edges are broken into bits
under 20m. When modeling individual trips, their reported endpoints are snapped to the
nearest graph node; we ignore ~10% of records where the discrepancy is over 20m. The
map graphics are from MapBox. #5

*R. Andreev, On-demand public transport is making us mobile, 2021, http://bit.ly/optimum-2021
lhttps://wwwl.nyc.gov/site/tlc/about/tlc-trip-record-data.page
2The codes for this section were mostly written in 2019.
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2.3 Traffic model

The trip trajectories are not available, only the pickup and dropoff locations (with uncer-
tainty of 10 to 100 m). Leveraging the reported trip duration we infer plausible mean-field
travel speeds (see Fig. 2¢) throughout the road graph as follows. The speeds on all roads are
initialized to 5m/s. For a sample of trips that start at 6-7 pm the quickest trajectories are
estimated. The speed of the road bits participating in those trajectories are adjusted toward
the reported trip duration. This is repeated.

Henceforth, “quickest” means w.r.t. this traffic model. We are assuming that drivers are not
sufficiently incentivised for detours (the credence good asymmetry is not significant).

3 Optimization problem

We are facing a so-called vehicle routing problem with these main attributes:
e Capacitated. There are N vehicles of maximal capacity of C' passengers each.

e Time windows. Each passenger has to be picked up within [—2min, 5 min]| of the
recorded pickup time in the trip data (§2.1). Dropoff is accepted until 10 min after
the recorded dropoff time. Ignoring a request incurs a penalty to the optimization
objective. The vehicles may wait up to 10 min at any location.

e Depot. All vehicles start and finish at a certain location but have enough time to reach
anywhere without compromising feasibility.

We use ortools” to find reasonable solutions computationally (on modest hardware). The
optimization objective is the total vehicle travel time, plus about 3h for each unserviced
request. We can roughly assess optimality by allotting more time to the solver.

We focus on a small slice of the trip data at a time, i.e. a few hundred passengers x 1h X a
few square km. We compare “customer satisfaction” depending on vehicle capacities.

4 Case study

4.1 Times Square

We take the first n single-passenger trips with reported pickup and dropoff within 1km of
Times Square and within 18:00-19:00 on May 1, 2016. Allowing n = 400 requests is already
a little difficult to optimize (over 1h x 2 Gflop/s), so we focus here on

n = 100 requests for N = 10 vehicles of capacity C' =1 or C' =8 .

3https://developers.google.com/optimization/routing/vrp
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(a) Histogram of the reported trip distance (between 0.1 and 30 miles).
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(b) Pickup hour heatmap.
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Figure 1: Summary of Yellow () and Green () taxi trips filtered as in §2.1. #2
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(a) Sample Yellow taxi trips.

Figure 2: A sample of shortest-path trajectories (§2.1/§2.2) and the traffic model from §2.3.
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(b) Sample Green taxi trips.
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(c) Inferred mean-field speed.
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The traffic model from §2.3 predicts trip times near Times Square well for 6-7 am but is too
optimistic for 6-7 pm (code #9); we use it here nevertheless.

We find that the single-passenger fleet (C' = 1) can only service about a half of requests,
whilst the minibus fleet (C' = 8) can handle most requests: see Fig. 4. The results for 2km
radius with N = 20 vehicles are similar (see code #8 to browse the results).

The minibus fleet runs at about half the capacity on average, see Fig. 5. Since all n = 100
pickup requests are from the first 17 min, it would be able to handle more requests per minute
when operating over an extended period.

In summary, we estimate that this demand can be serviced by N = 20 single-passenger taxis;
or N ~ 10 minibuses of capacity C' = 8 if some excess travel time is tolerated.

4.2 Game-theoretic spin

Consider a passenger (no groups) who chooses between: (A) a single-passenger taxi at cost
A that takes the quickest route, or (B) a minibus at cost B that occasionally detours for
others. The costs are assumed fixed (A =63, cf. code #10) since the trips in §4.1 are short.

Between 6-7 am and 6-7 pm, the number of requests doubles (Fig. 1b) while trip speeds near
Times Square are nearly 3x lower (code #9 and #11).

We postulate a causal link and assume the traffic model of §2.3 when all passengers take (B);
assume 1/3 the speeds when all passengers take (A); and interpolate linearly inbetween.

We take the n = 100 requests from §4.1 and split them randomly into a that take (A) and
b that take (B). For simplicity, we keep the minibus fleet at N = 10 regardless of a/b. Some
of (B) remain unserviced by the minibus fleet and count as (A).

We assume passengers convert excess travel time to dollars. As a proxy for this, we ap-
proximate the 2019 income” by the log-normal distribution with 4 = 11 and o = 0.7 (code
#12); a passenger’s income is drawn from this log-normal; division by 52 x 5 x 8h gives their
hour-to-dollar conversion factor ¢ (code #13).

For each condition a/b we compute the expected excess travel time e for (B) passengers.
Comparing A vs. B + (e x ¢) for each ¢ from the income distribution gives a ratio a/b of
those who actually prefer (A) to those who prefer (B).

This model predicts these equilibria (Fig. 6b):
e 50-60% would take the minibus if A = B + 3$; and
e 80-90% if A=B+68.

lhttps ://data.census.gov/cedsci/table?g=1600000US3651000&tid=ACSST5Y2019.52001
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(a) Vehicle capacity C = 1. (b) Vehicle capacity C' = 8.

Figure 3: Passenger trajectories colored by excess travel time w.r.t. the quickest route (n = 100
requests for N = 10 vehicles). Empty red circles are unserviced pickup requests. Cf. §4.1.
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Figure 4: Histogram of excess travel time w.r.t. the quickest route (n = 100 requests for N = 10
vehicles). The last bar shows unserviced requests. See §4.1.
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Figure 5: Load of each vehicle over time (n = 100 requests for N = 10 vehicles). The time
begins at ~17:50 when the fleet is released from the fictitious depot at Times Square. See §4.1.
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Figure 6: Results of §4.2. Faint: the imposed fraction of minibus takers; solid: effective fraction
without the unserviced minibus requests.

5 Conclusions

We asked whether taxis could be replaced by a smaller fleet of adaptively routed minibuses.
In bad traffic conditions the minibuses do not circulate quickly enough (Fig. 6a). However,
if we extrapolate “taxi” to include other point-to-point rides, including Uber/Lyft, and
postulate that this will improve traffic (from 6 pm closer to that of 6 am), our model predicts
that, depending on the cost differential, 50% to 90% of trips could be covered by the minibus
fleet (Fig. 6b). This seems plausible, given the relative success of ride pooling/sharing
UberPool and Lyft Line (typically no more than 3 concurrent passengers). Of course, better
traffic conditions might invite additional traffic, spoiling the effect.

We pretended here that the demand and the traffic conditions are known in advance, whereas
some 10 min in advance would be more realistic. Meanwhile, the density of requests in space
and time is quite high. Thus, we believe the results remain informative.

Tradeoffs other than travel time might influence the demand, such as crowd-aversion and
the flexibility with pickup and dropoff times. These could be modeled as willingness-to-pay
profiles (set up by the customer or inferred by the provider); or perhaps different travel
standards that depend on the current traffic could be auctioned off in near-real time.



6 Appendix

6.1 List of codes

page https://github.com/numpde/optimum/blob/main/ ...
#1 | p.l code/data/20210610-NYCTLC/a_download.py
#2 | p3 code/data/20210610-NYCTLC/e_explore.py
#3 | p.1 code/data/20210611-0SM/a_osm_download.py
#4 | p.l code/data/20210611-0SM/c_road_graph.py
#5 | p.l code/helpers/opt_maps/maps.py
#6 | p.2 code/model/20210613-GraphWithLag/b_train.py
#7 | p.3 code/data/20210611-0SM/e_explore.py
#8 | p.2 code/work/20210616-0PT1
#9 | p4 code/model/20210613-GraphWithLag/c_triptime_times_square
#10 | p4 code/data/20210610-NYCTLC/e_explore/trip_fare_vs_distance
#11 | p.4 | code/data/20210610-NYCTLC/e_explore/trip_speeds_times_square
#12 | p4 code/data/20210621-Income
#13 | p4 code/work/20210616-0PT1/d_postprocess_paramgrid.py
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